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We describe a new algorithm for Monte Carlo simulation of Ising spin systems and 
present results of a study comparing the speed of the new technique to that of a standard 
technique applied to a square lattice of 6400 spins evolving via single spin flips. We 
find that at temperatures T < T, , the critical temperature, the new technique is faster 
than the standard technique, being ten times faster at 7’ = 0.588 T, . We expect that 
the new technique will be especially valuable in Monte Carlo simulation of the time 
evolution of binary alloy systems. The new algorithm is essentially a reorganization of the 
standard algorithm. It accounts for the a priori probability of changing spins before, 
rather than after, choosing the spin or spins to change. 

The Monte Carlo method has been used extensively to study spin one-half 
Ising systems with nearest neighbor interactions [l-S]. It has been used to study 
equilibrium properties [l] as well as the time evolution [2-81 of spin lattice systems 
having interactions described by the hamiltonian 

H = -J c SiSi - H c Si ; si = fl, 
i.i i 
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where the summation indices refer to sites on a d-dimensional lattice (usually with 
toroidal boundary conditions) and the first summation is restricted to nearest 
neighbor spins.New configurationsof the lattice are generated from aninitial config- 
uration by reversing single spins (single spin flip studies [l-4]), or by interchanging 
pairs of unlike nearest neighbor spins (spin exchange studies [5-S]). Because 
a spin exchange leaves the number of up and down spins unchanged, it has 
been used to study binary alloys, identifying spin up with atomic species A and 
spin down with atomics species B. 

The standard Monte Carlo algorithm generates a sequence of configurations as 
follows. (1) Given a configuration %, the program selects at random with uniform 
probability a spin (or pair of nearest neighbor spins). (2) The program computes 
the probability P of reversing (interchanging) the spin(s) according to a thermo- 
dynamically reasonable formula. The formula reflects the fact that if the reversal 
(interchange) produces configuration V, the equilibrium ratio of the probability 
of V’ to the probability of %? is exp(--dE/kT), where AE is the energy of V less 
the energy of V and kT is Boltzmann’s constant times the absolute temperature. 
(3) The program chooses at random a fraction R with uniform probability over 
the interval [0, 1). (4) Then it performs the reversal (interchange) if R < P. In time 
evolution problems, P is usually computed as 

P = X/(1 + x); x = exp(-AE/kT). (2) 

An attempted reversal (interchange) at any lattice site (pair) represents the same 
amount of time as an attempted reversal (interchange) at any other site (pair). 
The number of attempts can then be used as a measure of time. In equilibrium 
studies, P is usually computed [9] as 

’ = I 
1, if AE < 0, 
exp(-AE/kT), otherwise, (3 

speeding up the program by eliminating step (3) if AE < 0 and increasing the 
probability of generating a new configuration at the expense of losing the time 
variable. Both (2) and (3) describe a Markov process whose stationary state is 
the equilibrium distribution with fixed magnetic field (magnetization). 

When the system is in or near equilibrium or some metastable state, the rate 
of generating new configurations using the standard algorithm becomes quite 
slow, since P is then usually very small. In ferromagnetic (J > 0) spin exchange 
problems, the rate of generating new configurations is even slower, since it becomes 
very unlikely that a pair of nearest neighbors, selected at random, will be different. 
Thus the usefulness of the standard algorithm is limited by the low probability 
of generating new configurations. 
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We describe here an algorithm which generates a new configuration with every 
choice of spin (neighbors) without changing the behavior of the process described 
by (2). It does so by accounting for the a priori probability of reversal (interchange) 
before, rather than after, choosing the site (pair) to change. In that sense it is a 
reorganization of the standard algorithm. Primarily because of extra bookkeeping, 
the computation time to generate a new configuration using this algorithm is longer 
than the computation time to attempt a new configuration using the standard 
algorithm. However, in situations in which the standard algorithm usually rejects 
the test configuration, the algorithm we present here generates new configurations 
much faster. 

The n-Fold Way 

The new algorithm, hereafter called the n-fold way, is based on the fact that there 
is a small number y1 of classes of sites (neighbor pairs) classifying sites (pairs) by 
their probability of reversal (interchange). For example, in the single spin flip 
square lattice with periodic boundary conditions there are only ten classes of sites, 
and we can number them as shown in Table I. The standard algorithm, as noted 
above, chooses among all sites (nearest neighbor pairs) with equal probability, 
determines that the selected site (pair) is of class i by scanning its neighbors, and 
finally decides whether to flip (interchange) by finding P, usually from a table of 

TABLE I 

Classifications of Spins in the Ten-Fold Way” 

Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Number of spin up 
Spin nearest neighbors 

UP 4 

UP 3 

UP 2 

UP 1 

UP 0 

Down 4 

Down 3 

Down 2 

Down 1 

Down 0 

a Lattice: square; Method: single spin flip; Periodic 
Boundary Conditions. 
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values Pi , and comparing it with a random fraction R. The n-fold way chooses 
among all sites (pairs) with a probability which is weighted in such a way that the 
probability of choosing a given site (pair) is proportional to its probability of 
flipping (interchanging). Thus once a site (pair) is selected, the flipping (inter- 
changing) can be immediately performed. 

The details of the n-fold way can be understood from the discussion that follows, 
a description of a test of the ten-fold way of Table I and the results of that test. 

The Ten-Fold Way 

We tested the ten-fold way (on a lattice of 80 x 80 spins) because many of the 
equilibrium properties of the (infinite) square Ising lattice, including the critical 
temperature T, , are well known [lo]. We describe the ten-fold way program in 
detail. Extensions to spin exchange models are obvious, but not trivial. Extensions 
to other lattices evolving via single spin flips are obvious and trivial. 

The program was written for a CDC 6600 computer in Fortran Extended (FTN) 
language. An array LOC(6400) is partitioned into ten classes with moveable 
partitions. The value of an element of LOC specifies a spin’s location in the 80 x 80 
square. Its index and the partition keep track of the classes of the spins as follows. 
Let ni be the number of spins in class i and let mi be the number of spins whose 
class number is less than i. Then LOC(m, + 1) through LOC(mi+l) contains the 
spins of class i (i.e., the partition is the mi’s and ni = mi+l - m,). A second array 
LOOK(6400) is required in order to find the address in LOC and the class of a spin, 
given its position in the lattice. The position determines the index of an element 
of LOOK. The value of that element is equal to the address of the spin in LOC 
plus 220 times the class of the spin. Thus the n-fold way requires an approximate 
doubling of core required for program variables (or tripling if one chooses to use 
two arrays, one for address in LOC and one for class, instead of packing the array 
LOOK). 

Each spin flip requires the following calculations. First we calculate the ten 
numbers, 

Qi = i njPj ; i = I, 2 )...) 10, 

which change after each flip and therefore explicitly depend on time. Then we 
choose a random number R with uniform probability in the interval [0, Qlo). By 
letting the class of the selected spin be defined by i such that Qi-1 < R < Qi 
(Q. = 0), we choose a spin in class i with probability niPi/Qlo . We then choose 
a random integer li with uniform probability in the interval [l, mi] to find LCH, the 
particular spin to flip. Therefore the a priori probability of a given spin being chosen 
as LCH is Pi/Qlo which is proportional to Pi , its probability of flipping. The 
location in the lattice of LCH is stored in LOC (mi + Zi). 
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To flip LCH, we rearrange LOC and its partitions in a relatively simple way, 
changing the class of LCH by &5 without changing the class of any other spins. 
But flipping LCH also changes the classes of its four nearest neighbors by -& 1. To 
find the neighbors’ locations in LOC and their class (without checking against 
the partition of LOC, a time-consuming operation), we must look in LOOK. 
Once we find the neighbors in LOC, we change their classes by four more simple 
rearrangements of LOC. Whenever we rearrange LOC, we also make the corre- 
sponding changes in LOOK to preserve proper crossreferencing between the two 
arrays. The rearrangement of LOC can be made considerably simpler if we use 
a larger LOC array. We chose the size of LOC as we did in anticipation of memory 
limitations in three-dimensional simulations or in spin exchange simulations, 
both of which require a larger pair of arrays. (To have a reasonable crystal size 
in three dimensions, more lattice sites are needed. In spin exchange simulations, 
the n-fold way requires two arrays of pairs of neighbors, and there are twice as 
many pairs as spins in a square lattice, three times as many in a simple cubic.) 

We increment the time variable 1 as follows. Q,, is the number of spins times the 
average probability that an attempt will produce a flip, given configuration V. 
At each flip, the time is incremented by a stochastic variable d t whose expectation 
value is proportional to Q;i . Thus t is proportional to the number of attempts 
per site. We choose 

At = -(~/&JlrrR, (5) 

where R is a random fraction. This choice reflects properly the distribution of time 
intervals between flips, for a reasonable physical model. In that model, discussed 
in Appendix B, the cumulative time t is approximately proportional to real time. 

RESULTS 

To discover circumstances under which the n-fold way is superior to the standard 
algorithm, we wrote a program for the standard algorithm which paralleled the 
ten-fold way program, using the same programming economies wherever possible. 
Using the same starting condition, we evolved both programs to steady state. 
We compared central processor time to produce all the flips needed to reach 
steady state in the two programs. We also calculated the ratio of times to produce 
a flip in steady state. The results are presented in Table II. 

In zero magnetic field, the two programs perform about equally well at T, , 
but as temperature decreases, the ten-fold way becomes markedly faster, being ten 
times as fast as the standard algorithm when T/Tc = 0.588. In nonzero field, the 
ten-fold way is even better. Almost certainly, previous authors [2-61 modified the 
standard algorithm using programming techniques which increased its speed 
without changing its basic structure. We could undoubtedly do the same to our 
ten-fold way program. Thus Table II should be regarded as simply illustrative. 
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It illuminates the value of the novel organization of the n-fold way algorithm. 
From Table II, it is clear that even allowing for differences in programming 
technique, there are many situations in which the ten-fold way is definitely superior 
to the standard algorithm in terms of central processor time. 

Extending the n-Fold Way 

For ferromagnetic spin exchange studies, the n-fold way would certainly be a 
great improvement over the standard algorithm under most conditions. Since 
clustering of like spins occurs quickly, the standard algorithm would quickly 
waste a lot of time choosing like neighbors. Furthermore, even when an unlike pair 
is found, the energy change can be greater than in single spin-flip simulations (e.g., 
in the square lattice, there are six neighbor bonds that change in a spin exchange, 
but only four in a spin flip). Thus the probability of interchanging can be much 
less than the probability of flipping. 

We expect the system to tend to a state in which the classes with the smallest 
probabilities of interchanging have the most pairs, especially at low temperatures. 
This expectation is confirmed by a previous study [7]. Z’min , the smallest probability 
of interchanging, therefore influences H, the average probability of interchanging 
more than any other Pi does. Since Pmin is smaller for interchanges than for flips, 
interchanges are, on the average, less likely than single spin flips at the same value 
of JIkT. 

Based on the results presented in Table II and the above comments, we conclude 
that the n-fold way is a valuable alternate technique to the standard Monte Carlo 
algorithm for generating configurations of Ising spin systems. In many studies 
it may reduce computation time by an order of magnitude or more. It will be most 
valuable in studies involving the spin-exchange mechanism with ferromagnetic 
interactions. Its value in single spin-flip models, although clearly demonstrated, 
is limited since the greatest interest in those models is near T = T, where the 
standard technique appears to be as efficient as the more elaborate n-fold way. 

It is interesting to contrast our algorithm with one proposed by Friedberg and 
Cameron [I l] for the study of equilibrium Ising systems. Their method is a variant 
of the basic idea of Metropolis et al. [9] which generates the random spin flips in 
a way particularly well suited for modern digital computers. Our method was 
motivated primarily as a study of the time evolution of a system but it could be 
applied equally well at equilibrium. If so used it represents an entirely different 
approach which is or could be made complementary. Friedberg and Cameron 
stress carrying out the elementary operations in a very rapid way. We stress the 
need to emphasize sites likely to undergo transitions. But there is no reason why 
elements of both algorithms could not be combined. 
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APPENDIX A: AN INTERMEDIATE ALGORITHM 

Previously we reported results of a Monte Carlo simulation of the time evolution 
of a two-dimensional binary alloy [7]. The algorithm used there was intermediate 
between the standard algorithm and the seven-fold way for spin exchanges on a 
ferromagnetic square Ising lattice. Using a redundant crossreferencing scheme 
(like the LOC/LOOK arrays), we selected an up spin (A atom) which had at least 
one down spin (B atom) neighbor; then we chose a neighbor at random. This made 
the spin exchange mechanism more like the single spin flip mechanism since each 
site chosen had a finite chance of being changed. 

But even with this improvement, the algorithm still suffered from unlikely 
interchanges. Data from that study indicates that at T/T, = 0.588, a system with 
equal concentrations of A and B atoms (equivalent to zero magnetization) required, 
on the average, about 40 choices of a pair of neighbors for each interchange once 
substantial clustering was evident. (In fact, that was nearly all of the time, for 
starting from a random initial state, this 4O:l ratio was established after only 
3 x IO4 interchanges in a study which ran to 2 x lo6 interchanges.) For each 
interchange, there were, on the average, 13.8 AB pairs found, and for each AB 
pair found there were on the average 2.9 like pairs found. Thus under those 
circumstances, the more complicated seven-fold way would have saved considerable 
computation time. 

APPENDIX B: COMPUTATION OF STOCHASTIC TIME VARIABLE 

Suppose that our lattice system is immersed in a bath at fixed temperature T. 
Further suppose that this bath generates attempted flips randomly in space and 
time such that, on the average, there is one attempted flip per lattice site in time 7. 
We expect T to depend on the temperature of the bath and the nature of the system, 
but only weakly on the state of the system. The probability of flipping a spin on 
a given random attempt is Q,,/N, where N is the number of lattice sites. Thus the 
probability of having a flip during the infinitesimal time interval dt is 

P dt = <Q&> dt. 

We calculate the distribution of time intervals between flips by considering the 
probability that no flip occurs before time d t has elapsed since the previous flip, 
P(At). 

The probability that no flip occurs before At + dt has elapsed since the previous 
flip, P(At + dt), must be less than P(At) by dp, the probability that no flip occurs 
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before At, but one occurs between dt and dt + dt. But dp is clearly P(dt)p dt; 
thus, 

P(dt + dt) = P(h) - P(A?)(Q,,/T) dt. (7) 

We rewrite (7) as a differential equation 

which has solution 

-W) = exp(-Q,, 44, (9) 

where we have used the obvious boundary condition that P(0) = 1. 
We can now calculate the stochastic time interval between tips. We choose a 

random fraction R uniformly over the interval (0, 1). We then set P(dt) = R and 
solve for d t: 

Lit = -(T/Q,,) In R. (10) 

Since we assume that T is nearly independent of the state of the system, the 
cumulative time t is approximately proportional to real time. 
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